Building Electrification Retrofits for Cold Climate Affordable Housing

Jackie Montesdeoca, Elevate
IREC “ASHP Cold Climate efficacy and building readiness” Webinar
November 17, 2022
About Elevate

- Elevate seeks to create a world in which everyone has clean and affordable heat, power, and water in their homes and communities — no matter who they are or where they live
Background on Elevate

Elevate has retrofitted over 100,000 units of affordable housing over the past 20 years

- Our programs span energy and health retrofits, solar, demand response and dynamic pricing, and contractor and workforce development
- We are developing an implementation model to electrify and decarbonize the affordable housing market as quickly and as equitably as possible
Building Electrification

- We need to eliminate fossil fuel use in buildings to combat the climate crisis.
- Residents with lower wealth, renters, seniors, and other vulnerable groups are more likely to:
 - Live in older buildings,
 - Lack cooling,
 - Disproportionally experience the effects of climate change, and
 - Be left behind in climate mitigation efforts.
- Building electrification retrofits may shift energy costs to tenants, this can be done without increasing energy burden.

We believe affordable housing should be high quality and low-carbon, and we need to move as quickly as possible to combat the climate crisis.
Project Case Study – La Paz Place, Chicago IL.

- 3-building property totaling 44 units.
- Masonry courtyard-style building, which is typical of the pre-War vintage.
- Of the 44 units, 31 are affordable to families at 50% Area Median Income (AMI) or $44,550, and 13 are affordable at 30% AMI ($26,730).
- Owner provides housing development and preservation, economic empowerment, leadership development, and tenant organizing.
- Pre-retrofit- individual gas furnaces and gas stoves, and common area gas hot water heaters and gas dryers
Project Team & Partners

Bickerdike

BICKERDIKE REDEVELOPMENT CORPORATION

ELEVATE

slipstream

comed

db | HMS

AN EXELON COMPANY
Air Source Heat Pumps with back-up electric resistance heat were installed in 10 of three- and four-bedroom units and tied into the solar PV array.

<table>
<thead>
<tr>
<th>End Use</th>
<th>Pre-Retrofit</th>
<th>Post-Retrofit</th>
<th>Resident or Owner Paid</th>
<th>Resident Experience Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating & Cooling</td>
<td>Individual gas furnaces & window AC units</td>
<td>Ducted cold-climate ASHPs</td>
<td>Resident</td>
<td>Added central cooling & reduced costs</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Central gas boiler</td>
<td>Heat pump water heaters (in parallel)</td>
<td>Owner</td>
<td>None</td>
</tr>
<tr>
<td>Cooking</td>
<td>Natural gas stoves</td>
<td>Non-induction electric stove</td>
<td>Resident</td>
<td>Shifted from gas to electric & improved indoor air quality</td>
</tr>
<tr>
<td>Clothes Dryers</td>
<td>Natural gas dryers in common area</td>
<td>Electric resistance dryers</td>
<td>Owner</td>
<td>None</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>None</td>
<td>70 kW solar PV array</td>
<td>Owner & Residents in 10 units</td>
<td>Adding solar for 10 units</td>
</tr>
</tbody>
</table>
Utility Bill and Carbon Analysis Results

Utility Bill Annual Impacts (Modeled)

<table>
<thead>
<tr>
<th>Utility Payer</th>
<th>Pre-Retrofit Annual Energy Cost</th>
<th>Post-Retrofit Annual Energy Cost (no solar)</th>
<th>Post-Retrofit Annual Energy Cost (with solar)</th>
<th>Percent Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident</td>
<td>$61,452</td>
<td>$49,362</td>
<td>$48,811</td>
<td>21%</td>
</tr>
<tr>
<td>Common Areas</td>
<td>$14,253</td>
<td>$21,034</td>
<td>$13,692</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>$75,705</td>
<td>$70,396</td>
<td>$62,504</td>
<td>17%</td>
</tr>
</tbody>
</table>

Carbon Annual Impacts (Modeled)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Pre-Retrofit Annual Carbon</th>
<th>Post-Retrofit Annual Carbon (no solar)</th>
<th>Post-Retrofit Annual Carbon (with solar)</th>
<th>Percent Carbon Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>635,661 lbs CO₂</td>
<td>400,977 lbs CO₂</td>
<td>356,021 lbs CO₂</td>
<td>44%</td>
</tr>
</tbody>
</table>
Utility Costs of Electrification + Solar

- Current (Gas Baseline)
- Future (Electrification)
- Electrification + Solar

$\text{Common} \quad \text{Tenant}$
Resident Engagement

- Bilingual resident engagement
 - Property-wide community meeting
 - Flyers
 - Door-knocking
 - Cash incentives
 - Post-retrofit interviews planned

- Support with bridging changing LIHEAP benefits due to shift from gas to electric heat
Learnings – This is complex, but it can be done!

- Building owners need support to figure it out the best solutions for their tenants and buildings.
- Affordable housing owners are focused on their tenants and operating costs.
- Adding cooling, resiliency, and health are of interest for owners and residents.
- Regional differences are very real in terms of economics, technology solutions, and contractor knowledge and availability.
- Electrification must be integrated with the other pillars of building decarb, especially energy efficiency, but requires braiding of funds.
- Policy is needed to fill gaps and address first costs, especially for electrical service upgrades and address LIHEAP benefits.
- Utility rate structures particularly for electric heat in certain regions need to be re-examined.
- Investments in diverse workforce and contractors are needed help to pivot electrification.

If done right, we can save tenants money and reduce carbon emissions.
Thank you!

Please reach out if you have follow-up questions:

Jackie Montesdeoca
Director, Building Electrification
Jackie.Montesdeoca@elevatenp.org

ElevateNP.org
info@ElevateNP.org
@ElevateNPOrg
@ElevateNPO
@ElevateNP